Evaluation of the Color Image and Video Processing Chain and Visual Quality Management for Consumer Systems

Abhijit Sarkar

B.E. Jadavpur University, Kolkata, India (2000) M.S. Pennsylvania State University, Pennsylvania, USA (2005)

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Color Science in the Chester F. Carlson Center for Imaging Science of the College of Science, Rochester Institute of Technology

May 2008

Accepted by Dr. Roy S. Berns,
Coordinator, M.S. Degree Program

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NY

M.S. DEGREE THESIS

The M.S. Degree Thesis of Abhijit Sarkar has been examined and approved by two members of the Color Science faculty as satisfactory for the thesis requirement for the Master of Science degree

Dr. Mark D. Fairchild, Thesis Advisor

Dr. Roy S. Berns

THESIS RELEASE PERMISSION FORM

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK

Title of Thesis: Evaluation of the Color Image and Video Processing Chain and Visual Quality Management for Consumer Systems

I, **Abhijit Sarkar**, hereby grant permission to the Wallace Memorial Library of Rochester Institute of Technology to reproduce my thesis in whole or part. Any reproduction will not be for commercial use or profit.

I additionally grant to the Rochester Institute of Technology Digital Media Library (RIT DML) the non-exclusive license to archive and provide electronic access to my thesis or dissertation in whole or in part in all forms of media in perpetuity. I retain all other ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Evaluation of the Color Image and Video Processing Chain and Visual Quality Management for Consumer Systems

Abhijit Sarkar

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Color Science in the Chester F. Carlson Center for Imaging Science of the College of Science, Rochester Institute of Technology

ABSTRACT

With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today's state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor Dr. Mark D. Fairchild for giving me the opportunity to work with him on this very interesting research project. It was a great learning experience for me.

I would like to thank Dr. Fairchild, Dr. Roy S. Berns and other faculty members in the Munsell Color Science Laboratory and the Center for Imaging Science for imparting to me the knowledge that builds the foundation of my professional career for the rest of my life.

I owe special thanks to Dr. Carl Salvaggio, for allowing me the opportunity to work with him on an independent research project and for his tremendous support. On the same note, I am grateful to many individuals at MCSL who formed an invaluable support system for me during my graduate studies at RIT. Dr. Mitch Rosen, Lawrence, Garrett, Ken, Mark (Updegraff), Val, Li, Ying, Mahdi, Mahnaz, Sunghyun, Shen, Jonathon, Philipp, Stacey and Erin, to name a few!

This research was made possible by a generous support of Intel Corporation. The test images, image sequences as well as outputs of the proprietary algorithms were provided by the sponsor. I am particularly indebted to Dr. Jorge E. Caviedes and Mahesh Subedar of Intel Corporation for their relentless guidance, valuable inputs and cooperation all along this collaborative research.

This section will not be complete if I did not acknowledge my parents and my elder sister for their forbearance, appreciation and encouragement throughout this long journey in the pursuit of my second master's degree!

TABLE OF CONTENTS

LIST OF FIG	GURES		x
LIST OF TA	BLES		xiii
1. INTR	ODUCTION		1
1.1	Thesis Obje	ective	2
1.2		ypothesis	
1.3		anization	
2. COL	OR VIDEO PRO	OCESSING	5
2.1	Color Speci	ifications in Video Standards	6
	2.1.1 Color	Primaries	8
		Electronic Transfer Functions	
	•	Coding Standards	
2.2		lependent Video Processing	
		ct Removal	
	2.2.1.1	Coding Artifact Removal	
	2.2.1.2	Noise Reduction	
	2 2 2 Spatic	o-Temporal Format Conversion	
	2.2.2.1	Spatial Scaling	
	2.2.2.2	De-Interlacing.	
	2.2.2.3	Frame-Rate Conversion.	
		ncement.	
	2.2.3.1	Sharpness	
	2.2.3.1	Contrast.	
	2.2.3.3	Color	
2.3		pendent Video Processing	
2.3		ing Principles of Modern Digital Display Devices	
	2.3.1.1 Work	Liquid Crystal Display	
	2.3.1.2	Plasma Display Panel	
	4.3.1.3	Digital Light Holeton	

		2	.3.1.4	Organic Light Emitting Diode	39
		2	.3.1.5	Laser displays	40
		2	.3.1.6	Field Emission Displays	41
		2.3.2	Color P	rocessing in Wide Gamut and Multi-Primary Displays	42
	2.4	Chal	lenges ar	nd Opportunities in Color Video Processing	. 52
3.	VIDE	O QUA	LITY AN	ND ITS ASSESSMENT	55
	3.1	Engi	neering A	Approach	57
	3.2	Psyc	hophysic	al Approach	. 59
		3.2.1	Image (Quality Metric Based on Image Difference	. 63
		3.2.2	Image (Quality Metric Based on Color Difference	. 64
		3.2.3	Image (Quality Metric Based on Image Appearance Modeling	. 65
	3.3	Stand	dardizatio	on of Video Quality Assessment and Metrics	68
	3.4	Subj	ective As	ssessment of Video Quality	71
	3.5	Conc	lusions.		73
4.	METH	HODS F	OR COL	OR AND CONTRAST ENHANCEMENT	
	IN IM	AGES A	AND VII	DEO	74
	4.1	Colo	r and Co	ntrast Enhancement in Digital Images:	
		A Re	view of	Past Research	75
		4.1.1	Color P	rocessing in LHS Space	76
		4.1.2	Histogra	am Based Methods	76
		4.1.3	Color/C	Contrast Enhancement Method Based on the	
			Chroma	ticity Diagram	80
		4.1.4	Saturati	on Clipping in LHS and YIQ Color Space	84
		4.1.5	Retinex	-Based Image Enhancement Methods	85
		4.1.6	Geomet	rical Method for Lightness Adjustment	88
		4.1.7	AINDA	NE: Locally Adaptive Image Enhancement	90
		4.1.8	Sigmoid	dal lightness Rescaling Function	91
		4.1.9	Local C	Color Correction Using Nonlinear Masking	92
		4.1.10	Patented	d Methods for Color Processing in Images and Video	93
	4.2	New	Algorith	nm: Working Requirements	99
	4 3	Colo	r Space		10

	4.4	Deta	nils of the Algorithm	101
		4.4.1	Global Lightness Adjustment.	101
		4.4.2	Local Contrast Enhancement.	105
		4.4.3	Saturation Enhancement.	105
	4.5	Nov	elty of the Proposed Method.	106
5.	IMPL	EMEN.	ΓATION AND PERFORMANCE ANALYSIS OF SEVERAL	
	COLC	OR/CON	NTRAST ENHANCEMENT ALGORITHMS	107
	5.1	Algo	orithms Implemented	107
		5.1.1	Implementation of Proposed Algorithm	108
		5.1.2	Algorithm CH	108
		5.1.3	Implementation of Colantoni's Algorithm	108
		5.1.4	Implementation of Samadani's Algorithm	109
		5.1.5	Implementation of Tao's Algorithm	110
		5.1.6	Implementation of Yang's Algorithm	111
		5.1.7	Algorithm YO	112
	5.2	Imag	ges Used in the Analysis	113
	5.3	Perf	formance Analysis	115
		5.3.1	Test Image "Avia"	117
		5.3.2	Test Image "Carnival".	122
		5.3.3	Test Image "Chinatown"	126
		5.3.4	Test Image "Couple"	131
		5.3.5	Test Image "Dome"	136
		5.3.6	Test Image "Faces"	141
		5.3.7	Test Image "Veggies"	145
	5.4	Con	clusions	149
6.	PSYC	НОРН	YSICAL EVALUATION OF THREE ALGORITHMS	151
	6.1	Colo	or Modeling of the LCD.	152
		6.1.1	Display Calibration.	152
		6.1.2	Display Characterization.	153
		6.1.3	Experimental Setup.	155
	6.2	Pevo	phonhysical Experiment	157

		6.2.1	Exper	imental Goal	157
		6.2.2	Softw	are for Psychophysical Experiments	157
		6.2.3	Algor	ithms Evaluated	158
		6.2.4	Test I	mages	158
		6.2.5	Test N	Movie Sequences	164
			6.2.5.1	Movie Sequence Avia	164
			6.2.5.2	Movie Sequence Calendar	166
			6.2.5.3	Movie Sequence Vintage Car	167
			6.2.5.4	Movie Sequence Walking Couple	168
		6.2.6	Viewi	ng Conditions	169
		6.2.7	' Obser	vers	169
		6.2.8	Exper	imental Method for Still Images	170
		6.2.9	Exper	imental Method for Video Test Sequences	171
	6.3	Re	sults and	Discussion	174
		6.3.1	Thurs	tone's Law of Comparative Judgment	174
		6.3.2	Confi	dence Interval	175
		6.3.3	Interv	al Scale Plots: Still Image Experiment	176
		6.3.4	Interv	al Scale Plots: Video Experiment	180
		6.3.5	Infere	nce from the Results.	183
7.	CONC	CLUSI	ONS AN	ND FUTURE RESEARCH	185
BI	BLIOG	RAPI	łΥ		188
Ar	Appendix A ALGORITHM PERFORMANCE ANALYSIS PLOTS		202		

LIST OF FIGURES

Figure 2.1	Color primaries defined in various video standards	11
Figure 2.2	A typical video processing pipeline in consumer video systems	16
Figure 2.3	Blocking artifact.	18
Figure 2.4	Ringing and color bleeding effect	19
Figure 2.5	Staircase effect	20
Figure 2.6	Mosaic patterns visible on the character's face	20
Figure 2.7	False contouring.	21
Figure 2.8	Motion-compensated mismatch effect around the	
	boundaries of moving objects	22
Figure 2.9	An example of spatial sampling: down sampling by pixel	
	dropping (left) and polyphase filtering (right)	25
Figure 2.10	An example of artifacts resulting from de-interlacing	27
Figure 2.11	Original and perceived motion in 2-3 pulldown	28
Figure 2.12	Original and perceived motion when difference between	
	the input and output frequency is more than 30 Hz	29
Figure 2.13	Mechanism of operation in a Liquid Crystal Display	34
Figure 2.14	Structure of a Plasma Display Device.	36
Figure 2.15	Optical switching through DMD.	38
Figure 2.16	Schematic of a DLP system	38
Figure 2.17	Structure of an OLED device.	39
Figure 2.18	Color gamut of laser projection TV in comparison with	
	that of Rec. 709 and LED backlit LCD	40
Figure 2.19	Extended region in xvYCC color space	41
Figure 2.20	Structure of a Spindt-type color FED.	42
Figure 2.21	Color gamuts of 5-primary DLP™ projection TV and	
	that defined by Rec. 709 primaries	44
Figure 2.22	pixel structure for 6-primary LCD.	45
Figure 2.23	Comparison of color gamuts of the five-primary MPD	
	and Rec. 709 in u'-v' diagram and in CIELAB space	46

Figure 2.24	Color gamuts of various displays: a) four-primary wide gamut	
	CCFL, b) five-primary normal gamut CCFL, c) five- primaries	
	display with wide gamut CCFL, d) reference RGB display	47
Figure 2.25	Single panel display with four color filters	
	a) schema, b) timing diagram	48
Figure 2.26	Vector representation of RGBW processing.	49
Figure 2.27	Color gamut of six-primary LCD with LED backlight	52
Figure 4.1	A single C-Y hue region, divided into different	
	luminance regions.	. 78
Figure 4.2	Specified histogram saturation for one of the test images (top)	
	and the saturation histogram for a single intensity/hue	
	region in the saturation enhanced image	80
Figure 4.3	Color enhancement using chromaticity diagram	81
Figure 4.4	Color enhancement in λSY color space	83
Figure 4.5	Saturation clipping for red hue plane in (a) LHS and (b) YIQ	85
Figure 4.6	Saturation-lightness curve families for two different hues	89
Figure 4.7	Saturation as a separable function of luminance	89
Figure 4.8	Nonlinear transfer functions for (a) adaptive luminance	
	enhancement and (b) adaptive contrast enhancement	91
Figure 4.9	Color image enhancement device patented by Jeong et al	95
Figure 4.10	Block diagram of the method discussed in Wang's pending patent	97
Figure 4.11	"Cave": an example image with a high dynamic range	102
Figure 4.12	Cumulative Distribution Function of the image "Cave"	103
Figure 4.13	"Faces": an example image with normal dynamic range	104
Figure 4.14	Cumulative Distribution Function for the image "Faces"	104
Figure 5.1	ΔJ Image Difference Maps: Avia	118
Figure 5.2	ΔC Contour Maps: Avia	119
Figure 5.3	Δh Contour Maps: Avia	121
Figure 5.4	ΔJ Image Difference Maps: Carnival	123
Figure 5.5	ΔC Contour Maps: Carnival	124
Figure 5.6	Δh Contour Maps: Carnival	. 125
Figure 5.7	ΔJ Image Difference Maps: Chinatown	127

Figure 5.8	ΔC Contour Maps: Chinatown	128
Figure 5.9	Δh Contour Maps: Chinatown	130
Figure 5.10	ΔJ Image Difference Maps: Couple	132
Figure 5.11	ΔC Contour Maps: Couple	133
Figure 5.12	Δh Contour Maps: Couple	135
Figure 5.13	ΔJ Image Difference Maps: Dome	137
Figure 5.14	ΔC Contour Maps: Dome	138
Figure 5.15	Δh Contour Maps: Dome	140
Figure 5.16	ΔJ Image Difference Maps: Faces.	142
Figure 5.17	ΔC Contour Maps: Faces.	143
Figure 5.18	Δh Contour Maps: Faces	144
Figure 5.19	ΔJ Image Difference Maps: Veggies	146
Figure 5.20	ΔC Contour Maps: Veggies.	147
Figure 5.21	Δh Contour Maps: Veggies	148
Figure 6.1	Results of calibration using Display Calibrator in Mac OS	153
Figure 6.2	Optimized Display Characterization Curve: Apple Cinema LCD	156
Figure 6.3	Different clips from the sequence Avia	165
Figure 6.4	Clips from the sequence Calendar	167
Figure 6.5	Clips from the sequence Vintage Car	168
Figure 6.6	Clips from the sequence Walking Couple	169
Figure 6.7	Interval scale for the average of all images	177
Figure 6.8	A summary of interval scales for all test images	178
Figure 6.9	Interval scales for the average of all clips	180
Figure 6.10	Interval scales for the four movie clips	181
Figure 6.11	Summary of interval scales for all movie clips.	182

LIST OF TABLES

Table 2.1	Color primaries used in video processing.	. 10
Table 3.1	A summary of various proposed video quality metrics.	. 67
Table 5.1	Seven images used in the performance analysis.	. 113
Table 6.1	Ranking Table for the performance of different algorithms	
	in the still image experiment	. 179